K-Mutual Nearest Neighbour Approach for Clustering Two-Dimensional Shapes Described by Fuzzy-Symbolic Features
نویسندگان
چکیده
In this paper, a new method of representing two-dimensional shapes using fuzzy-symbolic features and a similarity measure defined over fuzzy-symbolic features useful for clustering shapes is proposed. A k-mutual nearest neighborhood approach for clustering two-dimensional shapes is presented. The proposed shape representation scheme is invariant to similarity transformations and the clustering method exploits the mutual closeness among shapes for clustering. The feasibility of the proposed methodology is demonstrated by conducting experiments on a considerably large database of shapes and also, its validity is tested by comparing with the well known clustering methodologies.
منابع مشابه
FUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA
Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.
متن کاملFuzzy Nearest Prototype Classifier Applied to Speaker Identification
In a vector quantisation (VQ) based speaker identification system, a speaker model is created for each speaker from the training speech data by using the k-means clustering algorithm. For an unknown utterance analysed into a sequence of vectors, the nearest prototype classifier is used to identify speaker. To achieve the higher speaker identification accuracy, a fuzzy approach is proposed in th...
متن کاملA Comparative Study of Supervised Image Classification Algorithms for Satellite Images
Image classification is a complex information extraction technique. The objective of image classification is to identify the features occurring in an image and group similar features as clusters. The aim of this study is to compare some supervised image classification techniques .The techniques considered in this paper are Minimum Distance, k-Nearest Neighbour (KNN), Nearest Clustering Fuzzy C-...
متن کاملHesitant Fuzzy k-Nearest Neighbour (HFK-NN) Classifier for Document Classification and Numerical Result Analysis
This paper presents new approach Hesitant Fuzzy K-nearest neighbour (HFK-nn) based document classification and numerical results analysis. The proposed classification Hesitant Fuzzy K-nearest neighbour (HFKnn) approach is based on hesitant Fuzzy distance. In this paper we have used hesitant Fuzzy distance calculations for document classification results. The following steps are used for classif...
متن کاملLandmark based shape representation scheme for recognition of two dimensional shapes
This paper presents a novel fuzzy-symbolic approach for the recognition of two-dimensional shapes. The proposed method represents a binary shape using symbolic (multi interval valued) features. The representation scheme is based on the landmark points (dominant points) of the shape and the concept of fuzzy equilateral triangle membership function. A similarity measure to estimate the degree of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Engineering Letters
دوره 14 شماره
صفحات -
تاریخ انتشار 2007